In section 1-2, #36 the following model for a person's cholesterol level C at time t is considered:

$$\frac{dC}{dt} = k_1 (C_0 - C) + k_2 E,$$

where t is time measured in days, $C(t)$ is the patient's cholesterol level at time t in mg decitl, C_0 is the patient's natural cholesterol level in mg decitl, k_1 is a parameter for cholesterol production of the patient's body, k_2 is a parameter for the absorption of cholesterol from food, and E is the daily rate at which cholesterol is eaten (via food) in mg day.

(a,b) Suppose that $C_0 = 200$, $k_1 = k_2 = 0.1$, $E = 400$, $C(0) = 150$. What will the person's cholesterol level be after 2, 5 days on this diet?

To solve the differential equation, we observe that the variables can be separated, viewing the r.h.s as a function C and the function of to be $g(t) = 1$. Using the technique, we will solve the equation

$$\int_{k_1 (C_0 - C) + k_2 E}^1 dC = \int^1 dt$$

$$\int_{-k_1 C - k_1 C_0 + k_2 E}^{t + C_1} dC = t + C_1,$$

and with the substitution $u = -k_1 C - k_1 C_0 + k_2 E$, $du = -k_1 dC$, this becomes

$$- \frac{1}{k_1} \int \frac{1}{u} du = t + C_1$$

$$- \frac{1}{k_1} ln | - k_1 C - k_1 C_0 + k_2 E| = t + C_1$$

$$ln | - k_1 C - k_1 C_0 + k_2 E| = - k_1 t + C_2$$

$$| - k_1 C - k_1 C_0 + k_2 E| = e^{-k_1 t + C_2} = C_3 e^{-k_1 t}$$

$$- k_1 C - k_1 C_0 + k_2 E = C_4 e^{-k_1 t}$$

$$C = - \frac{C_4}{k_1} e^{-k_1 t} + C_0 + \frac{k_2}{k_1} E$$

so that

$$C(t) = Ce^{-k_1 t} + C_0 + \frac{k_2}{k_1} E \quad (1)$$

for an arbitrary constant C, to be determined from initial conditions. Given $C_0 = 200$, $k_1 = k_2 = 0.1$, $E = 400$, and $C(0) = 150$ we obtain that $C = - 450$, and thus

$$C(t) = - 450 e^{-0.1t} + 600.$$

From here then we obtain that $C(2) \approx 232$ and that $C(5) \approx 328.$
(c) With the initial conditions as above, what will the person's cholesterol level be after a long time on this diet?

Clearly, as \(t \to \infty \), \(C(t) \to 600 \). \(\ldots \text{since } e^{-x} \to 0 \text{ as } x \to \infty \}

(d) Suppose that, after a long time on the high cholesterol diet described above, the person goes on a very low cholesterol diet, so \(E \) changes to \(E = 100 \). What will the person's cholesterol level be after 1 day on the new diet, after 5 days on the new diet, and after a very long time on the new diet?

When the diet is changed, which we will consider as \(t = 0 \), the cholesterol level is \(C(0) = 600 \) mg. The new value for \(E \) is 100, and we saw above that the general solution is

\[
C(t) = Ce^{-kt} + C_0 + \frac{k_2}{k_1}E. \tag{1}
\]

Since \(C_0 \) is still 200, we obtain upon inserting the parameter values that

\[
C(t) = Ce^{-0.1t} + 300.
\]

The initial condition \(C(0) = 600 \) tells us that \(C = 300 \), and our particular solution is

\[
C(t) = 300e^{-0.1t} + 300.
\]

Consequently we will have \(C(1) \approx 571 \), \(C(5) \approx 482 \), and \(C(t) \to 300 \) as \(t \to \infty \).

(e) Suppose the person stays on the high cholesterol diet, but takes drugs that block some of the uptake of cholesterol from food, so \(k_2 = 0.075 \). Starting with the cholesterol level from part (c), what will the person's cholesterol level be after 1 day, after 5 days, and after a very long time?

Since the patient remains on the high cholesterol diet, \(E = 400 \), and the drug causes \(k_2 = 0.075 \). With these changes we obtain from our general solution

\[
C(t) = Ce^{-kt} + C_0 + \frac{k_2}{k_1}E. \tag{1}
\]

our particular solution

\[
C(t) = Ce^{-0.1t} + (200 + \frac{0.075}{0.1}400) = Ce^{-0.1t} + 500,
\]

and the initial condition \(C(0) = 600 \) leads to

\[
C(t) = 100e^{-0.1t} + 500.
\]

Therefore, \(C(1) \approx 590 \), \(C(5) \approx 560 \), and \(C(t) \to 500 \) as \(t \to \infty \).